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Abstract: In this study, computer-aided engineering (CAE) simulation software and the design of 

experiments (DOE) method were used to simulate the injection molding process in terms of the melt flow 

length, using a spiral part. Process parameters such as melt temperature, mold temperature, injection 

pressure and mold cavity thickness were considered as injection molding variables. A predictive model 

for the flow length was created using a three-layer artificial neural network (ANN). The ANN model was 

trained with both simulation and experimental data, and the predictive performances were compared in 

terms of correlation coefficient, root mean square error and mean relative error. The cavity thickness 

and melt temperature were found to be the most significant factors for both the simulation and the 

experiment, while the injection pressure and the mold temperature had little effect on the flow length. 

The ANN model trained with Moldex3D data shows a significantly higher prediction capacity than the 

ANN model trained with experimental data. However, the melt flow lengths predicted by the ANN model 

for both Moldex3D and Moldflow simulation data are statistically significant, indicating that the 

proposed prediction methodology, which combines the ANN model, DOE method and the CAE 

simulation technology, can effectively predict the flow length of injection molded parts, with a small 

number of data. 
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1. Introduction 
Considering the demands of the injection molding industry, i.e., to produce cheaper complex parts 

with high quality, advanced tools and methods are necessary to deal with the injection molding process. 

The most efficient and cost-effective way of predicting the behavior of molten polymers during the 

injection molding process is to carry out numerical simulations [1-3]. Over the years, in the attempt to 

assist the injection molding industry, several computer-aided engineering (CAE) simulation programs 

have been developed, such as C-MOLD, Moldflow and Moldex3D. 

By injection molding simulation it is possible, at different stages of the injection molding process 

(filling, packing, cooling, ejection, etc.), to obtain useful information such as flow pattern, fill time, air 

trap, weld lines, warpage and shrinkage, sink marks, etc. Moreover, to increase the process/part quality 

and productivity, the simulation of polymer flow allows the designer to change the product design before 

production, optimize the tool design before the first tooling, establish the processing window, reduce the 

number of mold trials, or perform a careful molding machine selection [1-3]. 

Since polymers exhibit a complex thermo-viscoelastic behavior during the injection molding process 

[4], the processing parameters play a major role in influencing the properties and quality of the final 

products [1-3]. Thus, the optimization of the injection molding parameters in conjuction with the quality 

characteristics can be a tedious trial and error process, which requires a large number of physical 

experiments [5]. Therefore, reasearchers have tried to find reliable alternative solutions to optimize the 

injection molding parameters in order to improve the quality characteristics of the molding parts.  

Approaches such as response surface methodology [6, 7], design of experiments [8], Taguchi method 

[9-14], surrogate model [15], genetic algorithms [6, 7], and artificial neural network model [16-24] have 
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been combined with numerical simulation and/or experimental analysis to reduce the time for optimizing 

the injection molding process. 

The artificial neural network (ANN) has been extensively used to predict the relationship between 

process parameters and the quality of molded parts through shrinkage [17], warpage [16, 23-25], 

mechanical properties [19], part thickness [21], and weight [22]. 

When designing plastic parts for the injection-molding process, one of the most important aspects is 

to understand how the polymer fills the mold. The simulation of the filling stage is important in providing 

the preliminary decisions regarding the processability of the polymer, which is generally based on 

estimating the flow length. In addition, it is important to model the polymer flow as accurately as 

possible in order to design and control the injection-molding process, which will ultimately lead to the 

best mechanical properties of the injection-molded parts. 

However, the researches cited above mostly optimized the process parameters that minimize the 

warpage or/and shrinkage of the parts, whereas the flow behavior greatly affecting the quality of the 

injection molding parts was rarely taken into consideration [26-30]. 

In this paper, finite element simulations are carried out under the Moldflow and Moldex3D software 

environments to evaluate and compare the effect of injection molding parameters such as melt and mold 

temperatures, injection pressure, and cavity thickness on the quality of the molded parts through the flow 

length - the greater the flow length, the better the flow behavior of the polymer. 

To reduce the computing time, numerical simulations are carried out for combinations of process 

parameters designed using a 4-factor 3-level Taguchi L27 orthogonal array. A three-layer artificial neural 

network (ANN) model with a tangent sigmoid transfer function at the hidden layers and a linear transfer 

function at the output layer, trained with both simulated and experimental data, is used to predict the 

flow length. The flow length predicted by the neural network is compared with those obtained by 

simulation and experimental analysis, on independent datasets generated for selected injection molding 

conditions. 

 

2. Materials and methods 
2.1. Materials 

In the experimental investigation, two semi-crystalline polymers were considered – namely low-

density polyethylene (LDPE ROPOTEN® T, Lokoil), and high-density polyethylene (HDPE 277-73, 

KazanOrgSintez, Russia). The melt flow rate (MFR) was measured using a Melt Flow Quick Index 

(CEAST Model 7021-7022, Instron, USA). The tests were carried out with a load mass of 2.16 kg at 

various temperatures relevant for the injection molding process. 

The Differential Scanning Calorimetry (DSC) analysis was carried out with the TA Q200 Differential 

Scanning Calorimeter (TA Instruments, US). In order to erase the previous thermal history, the pellets 

with a mass of about 10 mg, sealed in aluminum pans, were heated from 25°C to 250°C at a scanning 

rate of 10°C/min, and held isothermally for 5 min. The samples were then cooled, heated and cooled 

again in the same temperature range, at a scanning rate of 10°C/min in order to measure the melting, 

crystallization, transition and ejection temperatures. The thermal properties and the melt flow rate are 

listed in Table 1. 

 

Table 1. Crystallization and melting behavior of LDPE and HDPE polymers 
Parameters LDPE HDPE 

Melting temperature (°C) 115.9 136.5 

Crystallization temperature (°C) 95.3 113.2 

Crystallinity (%)* 21.6 45.7 

Transition temperature (°C) 98.2 117.2 

Ejection temperature (°C) 88.2 103.3 

MFR (g/10 min) 

2.22 (190°C) 4.85 (190°C) 

4.99 (215°C) 13.46 (255°C) 

7.45 (235°C) 17.78 (275°C) 
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12.21 (255°C) 22.98 (295°C) 
*Based on the 2nd DSC heating curve at 10°C/min 

 

For the numerical simulation of the injection molding process similar or the same polymers must be 

used to have valid comparison with the experiments. Therefore, after reviewing the material database of 

Moldflow and Moldex3D for the polymers used in this study (LDPE and HDPE), the material parameters 

were selected from the Moldflow Plastics Labs database [32] based on the polymer family and trade 

name, melt flow index, and melting and transition temperatures. Table 2 shows the parameters for the 

Cross-WLF viscosity model, while Table 3 and Table 4 show the parameters for the modified Tait 

equation. It should be noted that Moldflow simulations are most available in literature [1, 2, 8, 11, 14-

16, 25, 27, 28, 33-39]. The heat capacity and thermal conductivity were assumed to be constant. For the 

LDPE, the heat capacity was 3400 J/(kg·K) and the thermal conductivity was 0.31 W/(m·K), while for 

the HDPE, the heat capacity and thermal conductivity were 2822 J/(kg·K) and 0.263 W/(m·K), 

respectively [32]. 

The processing parameters, such as melt temperature, mold temperature, injection pressure, and mold 

cavity thickness, and their levels are given in Table 4. In order to reduce the number of simulation trials 

(runs), a L27 (3
4) orthogonal array (OA) was used for the design of the simulation experiments [39, 40], 

as shown in Table 5. 

 

 

Table 2. Cross-WLF model parameters for the LDPE and the HDPE [32] 
Constants n *  (Pa) D1 (Pa s) D2 (K) D3 (K/Pa) A1 

2

~
A (K) 

LDPE 0.366 55764 1.33×1019 233.15 0 45.04 51.6 

HDPE 0.163 273170 1.35×1015 153.15 0 33.21 51.6 

 

 

Table 3. pVT model parameters for the LDPE [32] 
Constants Values Constants Values Constants Values 

b1m (m3/kg) 1.260×10-3 b1s (m3/kg) 1.106×10-3 b5 (K) 390.65 

b2m (m3/kg K) 9.690×10-7 b2s (m3/kg K) 5.480×10-7 b6 (K/Pa) 1.870×10-7 

b3m (Pa) 1.002×108 b3s (Pa) 2.304×108 b7 (m3/kg) 0.155×10-3 

b4m (1/K) 4.471×10-3 b4s (1/K) 4.060×10-3 b8 (1/K) 0.103 

    b9 (1/Pa) 3.380×10-8 

   

 

Table 4. pVT model parameters for the HDPE [32] 
Constants Values Constants Values Constants Values 

b1m (m3/kg) 1.274×10-3 b1s (m3/kg) 1.075×10-3 b5 (K) 414.50 

b2m (m3/kg K) 1.026×10-6 b2s (m3/kg K) 2.077×10-7 b6 (K/Pa) 1.543×10-7 

b3m (Pa) 9.263×107 b3s (Pa) 3.324×108 b7 (m3/kg) 0.187×10-3 

b4m (1/K) 4.941×10-3 b4s (1/K) 2.460×10-6 b8 (1/K) 0.052 

    b9 (1/Pa) 1.023×10-8 

 

2.2. Part geometry and design of experiments 

The molded part is a spiral 4 mm wide and 2000 mm long, as shown in Figure 1. Three different 

thicknesses, i.e., 1.0, 1.5 and 2.0 mm, were considered to achieve a wide range of shear rates. Due to its 

flow length, this mold is considered an open mold. The mold is filled by means of a constant flow rate 

and the filling stage ends when the programmed injection pressure is reached because the injection 

machine does not have enough pressure to fill the mold cavity completely. 
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Figure 1. Solid model for the spiral part and 

the runner system 

 

The processing parameters, such as melt temperature, mold temperature, injection pressure, and mold 

cavity thickness, and their levels are given in Table 5. In order to reduce the number of simulation trials 

(runs), a L27 (3
4) orthogonal array (OA) was used for the design of the simulation experiments [40, 41], 

as shown in Table 6. 

 

Table 5. Process variables and their levels 
Parameter/Polymer Level 

HDPE/LDPE 1 2 3 

Melt temperature (°C) A 255/215 275/235 295/255 

Spiral thickness (mm) B 1.0 1.5 2.0 

Injection pressure (MPa) C 70 110 140 

Mold temperature (°C) D 30 40 50 

 

2.3. Simulation of the injection molding process 

The polymer flow through the spiral part was simulated by Moldflow and Moldex3D software, 

imposing the same injection molding conditions. The L27 OA (Table 6) was randomly run by each 

simulation program. It should be noted that runs 3, 8, 12, 17, 21 and 25 were used for testing the ANN 

model. 

The spiral part was modeled by the NX7 software, imported to Moldflow and Moldex3D programs, 

and then meshed. 

For Moldflow simulation, the cold runner system was created in the preprocessor and meshed with 

beam elements. For Moldex3D simulation, the runner system was also created in the NX7 software and 

meshed together with the part using the same type of elements, i.e., tetrahedral elements. 

Simulations on a basis of surface mesh (2.5D analysis) and volume mesh (3D) were performed under 

non-isothermal conditions and the filling simulation results were compared in order to acquire the best 

results. 

For Moldex3D, the simulation results derived from 2.5D and 3D simulations were nearly identical 

and comparable to those in the real molding experiments (p-value >0.05 and the relative error between 

2.5D and 3D results < 5 %). 

For Moldflow, both 2.5D and 3D simulation results deviated from those of the real molding 

experiments, and surprisingly, the 3D simulation results deviated much from the 2.5D simulation results. 

Thus, in the case of Moldflow, for the analysis of the flow length, a 2.5D model with 12 layers across 

the thickness was considered. After preliminary simulations, the best meshing strategy was identified 

for both simulation programs and kept constant for the further simulation runs. The number of elements 

in the Moldflow mesh was 54,024 for the part and 77 for the cold runner, compared to that in the 

Moldex3D mesh, of 444,746 for the part and 32,438 for the runner. 
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The flow fronts from simulations were imported into the CAD software and measured using line and 

arc construction tools. 

 

 

Table 6. Layout of the L 27 OA 

DOE 
Factors 

A B C D 

1 1 1 1 1 

2 1 1 2 2 

3* 1 1 3 3 

4 1 2 1 2 

5 1 2 2 3 

6 1 2 3 1 

7 1 3 1 3 

8* 1 3 2 1 

9 1 3 3 2 

10 2 3 1 1 

11 2 3 2 2 

12* 2 3 3 3 

13 2 1 1 2 

14 2 1 2 3 

15 2 1 3 1 

16 2 2 1 3 

17* 2 2 2 1 

18 2 2 3 2 

19 3 2 1 1 

20 3 2 2 2 

21* 3 2 3 3 

22 3 3 1 2 

23 3 3 2 3 

24 3 3 3 1 

25* 3 1 1 3 

26 3 1 2 1 

27 3 1 3 2 

* Used for testing the ANN model 

 

 

The most accurate simulations were those closer to the experimental results. The error-estimate is 

defined as follows [40, 41]: 

100
exp

expsim


−
=

l

ll
RE     (1) 

in which expl  and siml  is the experimental and simulation/prediction value of the flow length, 

respectively. 

 

2.4. Injection molding experiments 

Injection molding experiments were carried out based on the L27 OA (Table 6) using an ARBURG 

injection molding machine (Allrounder 320 C Golden Edition, Germany) with a clamping force of 500 

kN. All the other processing parameters were kept constant. The holding pressure was set to 63 MPa. 

The holding and cooling times were set to 7.5 and 15 seconds, respectively.  
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Figure 2. LDPE melt flow length – comparison between Moldex3D (left column) 

and moldflow (right column) simulations: (a) DOE 3 (1.0 mm cavity thickness); 

(b) DOE 21 (1.5 mm cavity thickness); (c) DOE 12 (2.0 mm cavity thickness) 

 

In the experiments, the mold temperature was controlled by a thermal regulator (Termotech Plus, 

Dega, Italy), with a heating capacity of 6 kW and a maximum oil temperature of 200°C. 

For each set of processing conditions in Table 6, the first 10 moldings were discarded before 

collecting at least 25 moldings, from which 10 moldings were randomly selected for measuring the flow 

length and part weight. Since LDPE and HDPE are semi-crystalline polymers, the molded parts were 

allowed to relax for at least 24 hours before measurements were taken. 
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Figure 3. HDPE melt flow length – comparison between Moldex3D (left column) 

and Moldflow (right column) simulations: (a) DOE 3 (1.0 mm cavity thickness); 

(b) DOE 21 (1.5 mm cavity thickness); (c) DOE 12 (2.0 mm cavity thickness) 

 

The reproducibility of the injection molding process was assessed through part weighing. In general, 

it was observed that more than 95% of the moldings were inside the statistic control limits for all 

processing conditions [41]. 

 

3. Results and discussions 
Figure 2 and Figure 3 show the flow length (filling distance into the mold cavity) with respect to 

different injection molding conditions as predicted by Moldex3D and Moldflow, for LDPE and HDPE, 

respectively. As shown in these figures, the filling distance increases rapidly with the increase of the 

cavity thickness. Under the same injection molding conditions, the flow front in Moldflow advances 

faster and, thus, farther than in the Moldex3D, as shown in Figure 2 and Figure 3.  
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Since the viscosity and pVT models are the same, the discrepancy in the flow length is most likely 

due to the differences in geometry modeling and meshing as well as in the simulation assumptions. For 

example, Moldex3D simulates the melt elastic behavior in addition to its viscous behavior during 

processing. 

On the contrary, the Moldflow assumes that the material becomes suddenly elastic when the 

temperature falls below the transition temperature, at which the melt stops to flow. 

Figure 4 and Figure 5 show the comparison of the Moldflow predicted and experimental (images of 

the actual injection molded parts) flow lengths, under different injection molding conditions, i.e., the 

worst (DOE 9 for LDPE and DOE 12 for HDPE) and best (DOE 1 for both LDPE and HDPE polymers) 

case predictions. It was found that the flow length predicted by the Moldflow is longer than the 

experimentally measured value. 

As the cavity thickness increases, the deviations between experimental and simulation results 

increase, as shown in Figure 4 and Figure 5. For HDPE, the maximum relative error between 

experimental and Moldflow simulations is 92.6%, while the minimum is 6.8%. 

For LDPE, the maximum relative error between experimental and Moldflow simulations is 115%, 

while the minimum is 21.6%. However, the MRE of all 27 runs is 41.2% for HDPE and 51.5% for LDPE 

and therefore the Moldflow flow length simulations will be of low quality. 

Although not perfectly superposed, the Moldex3D simulation results are consistent with the 

experimental data, with only marginal differences between simulation and experiments (p-value >0.05). 

The LDPE and HDPE melt flow lengths as predicted by Moldex3D are compared with the 

corresponding experimental values in Figure 6 and Figure 7, the worst (DOE 3 for LDPE and DOE 2 

for HDPE) and best (DOE 19 for LDPE, and DOE 22 for HDPE) case predictions. 

For HDPE, the maximum error between experiments and Moldex3D simulations is 28%, while the 

minimum is 0.2%. For LDPE, the maximum error between experiments and Moldex3D simulations is 

31%, while the minimum is 0.2%. However, the MRE of all 27 runs is 8.3% for HDPE and 14.4% for 

LDPE and therefore the Moldex3D predicts accurate results. 

 

 
Figure 4. Comparison between Moldflow and experimental LDPE flow lengths 

for cavity thickness of (a) 1.0 mm (DOE 1, best prediction, relative error of 21.6 %) 

and (b) 2.0 mm (DOE 9, worst prediction, relative error of 115 %) 
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The deviations between numerical simulation and experiment can be attributed to the fact that, except 

for the thermal and mechanical properties, the material properties, such as viscosity model, pVT 

properties, heat transfer coefficient, were obtained from the database [32], and may be different from 

the real ones. 

Moreover, the pressure-dependence of viscosity is not taken into account in the simulation ( 03 =D , 

Table 1), although this effect becomes important when high pressures are encountered as in the case of 

mold filling and packing phases, especially for the LDPE. HDPE is known to be less sensitive to 

temperature and pressure compared to LDPE. However, HDPE has high viscosity due to its molecular 

weight. 

The sprue channel may also have an influence on the flow length especially for the Moldex3D 

simulations. Due to the cone shape profile, both shear and normal stresses are developed along the sprue 

wall and, therefore, viscosity increases about three times more than shear viscosity [28]. The rise of 

viscosity in the sprue channel would decrease the flow length. 

 

 
Figure 5. Comparison between Moldflow and experimental HDPE flow 

lengths for cavity thickness of (a) 1 mm (DOE 1, best prediction, relative error 

of 6.8 %) and (b) 2 mm (DOE 12, worst prediction, relative error of 92.6 %) 

 

The heat transfer coefficient is also an important parameter, especially for thin-wall parts. If the heat 

transfer coefficient is too high, the melt flow length in simulation will be shorter than its experimental 

value. However, if the heat transfer coefficient is too low, the melt flow length in simulation will be 

greater than its experimental value. 

Figure 8 shows the comparison between the simulation and experimental flow lengths for all 

conditions considered in Table 5. 
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Figure 6. Comparison between Moldex3D and experimental LDPE 

flow lengths for cavity thickness of (a) 1.5 mm (DOE 19, best 

prediction, relative error of 0.19 %) and (b) 1 mm (DOE 3, worst 

prediction, relative error of 31 %) 

 

The simulation results show the same trend as compared to the experimental ones. However, the flow 

lengths predicted by the Moldflow are greater than those predicted by the Moldex3D or their 

corresponding experimental values. 

The Moldflow over predicts the flow length, especially for cavities with higher thickness (DOE 7 to 

DOE 12, and DOE 22 to DOE 24). 

On the other hand, although they do not perfectly reproduce the experimental data, the Moldex3D 

simulation results agree well with the experimental results. 
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Figure 7. Comparison between Moldex3D and experimental HDPE 

flow lengths for cavity thickness of (a) 2.0 mm (DOE 22, best prediction, 

relative error of 0.2 %) and (b) 1.0 mm (DOE 2, worst prediction,relative error of 28 %) 

 

The one-way analysis of variance (ANOVA) and the t-test were used for checking the significance 

of differences at a level of significance of 0.05 (p<0.05 indicates statistically significant differences) 

[41]. 

First, the difference between the Moldex3D, Moldflow and experimental flow lengths was 

investigated by using the ANOVA, considering the flow length for all 27 runs. The p-value lower than 

the significance level (p = 0.0004 and F=8.75 > Fcrit=3.11 for HDPE and 0.0002 and F=9.84 > Fcrit=3.11 

for LDPE) suggests that the Moldex3D, Moldflow and the experiment do not perform equally. 

Specifically, Moldex3D (mean (standard deviation), 181.93 (73.65) mm for HDPE and 177.63 (77.01) 

mm for LDPE) performed better than Moldflow (mean (standard deviation), 274.26 (118.71) mm for 

HDPE and 269.78 (112.02) mm for LDPE) in terms of flow length, if compared with the experiment 

(mean (standard deviation), 189.13 (63.13) mm for HDPE and 178.59 (61) mm for LDPE). 
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Figure 8. Comparison between simulation and 

experimental flow lengths 

 

        
 

     

 

Figure 9. Main effect 

plots for HDPE flow 

length 
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Figure 10. Main effect plots for LDPE flow length 

 

Based on the t-test we have found that there is no statistically significant difference between the 

Moldex3D and the experimental flow lengths (p-value is equal to 0.35 for HDPE and 0.48 for LDPE). 

However, when comparing the Moldflow and the experimental data, the p-value is 0.0003 for LDPE and 

0.001 for HDPE, which indicates that the difference between the Moldflow and experimental flow 

lengths is statistically significant. Furthermore, when comparing the Moldex3D and Moldflow results, 

the t-test with p-value of 0.001 for both HDPE and LDPE suggests that the difference between 
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Moldex3D and Moldflow flow lengths is statistically significant. The flow lengths predicted by 

Moldflow were significantly greater compared to the experimental values (mean, 274.26 mm for HDPE 

vs. 189.13 mm for HDPE). 

To investigate systematically the effect of processing parameters on the flow length, the main effect 

plots were constructed, as shown in Figure 9 and Figure 10, for LDPE and HDPE, respectively. The 

interactions between the different factors were also analyzed. It was found that, out of the four processing 

parameters, part thickness and melt temperature are decisive parameters, while mold temperature and 

injection pressure are secondary parameters. 

In the simulation under the Moldflow environment, three parameters were found to be statistically 

significant (p-value smaller than 0.05): part thickness, melt temperature, and injection pressure. The flow 

length predicted by Moldflow increases with increasing melt temperature, part thickness and injection 

pressure, as shown in Figure 9 and Figure 10. 

The flow length predicted by Moldex3D increases with increasing part thickness, melt temperature 

and mold temperature. However, the flow length predicted by Moldex3D appeared less dependent on 

injection pressure. 

The experimental flow length increases with increasing part thickness, melt temperature and 

injection pressure. The mold temperature becomes an important parameter in terms of flow length if 

correlated with part thickness due to the effect of the frozen layer. 

Concerning the interaction effects, only one statistically significant interaction (p-value smaller than 

0.05) was identified both for simulation and experimental analyses, the interaction between melt 

temperature and part thickness. 

Increasing thickness from low to high level results in almost doubling the flow length, as shown in 

Figure 9 and Figure 10. This factor becomes more significant as the melt and mold temperatures increase. 

At higher melt temperatures, the viscosity of the polymer melt decreases and the polymer flows easier 

into the mold and, as a result, the flow length increases. Moreover, a higher melt temperature delays the 

solidification of the melt and the polymer has longer time to stay molten (the polymer cools slower), 

especially at thicker walls, and thus travel longer, resulting in greater length. 

In the case of smaller thickness, the cross-section area, which contributes to the filling of the cavity, 

is reduced and, consequently, the flow front advancement is slowed down. This effect is more important 

in the case of lower melt and mold temperatures, as shown in Figure 8 and Figure 9. The polymer injected 

first solidifies as it comes into contact with the cold mold wall. The solidified skin polymer acts as a 

second wall inside the mold cavity narrowing the flow channel (creating a smaller cross-section), 

resulting in a shorter flow length. On the contrary, the mold cavity with a thicker section offers a 

significant lower flow resistance than that with a thin section, resulting in a greater flow length. 

Another important aspect is shear heating, which also contributes to an additional rise in melt 

temperature during the mold filling of the thin spiral and positively impacts on melt viscosity, so the 

polymer melt will flow easier. 

 

3.1. Architecture and training of the ANN model 

A three-layer ANN model with a sigmoid transfer function with back-propagation algorithm between 

the input and the hidden layer and a linear transfer function between the hidden and the output layer was 

used in this study [5, 20, 22, 23, 42, 43]. The architecture of the ANN model used to predict the flow 

length is shown in Figure 11.  
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Figure 11. Architectures of the ANN for flow length 

 

The input layer has four neurons corresponding to the design variables, such as melt temperature, 

spiral thickness, injection pressure, and mold temperature, whereas the output layer have two nodes, i.e., 

flow length and spiral weight. 

The capability of the ANN model to predict the flow length is influenced by the number of neurons 

in the hidden layer of the network and the connection type. It was shown that increasing the number of 

neurons in the hidden layer increases the accuracy of the network up to a point, after which it declines, 

allowing the optimum number of neurons to be identified [5, 20, 22, 24]. The trial-and-error method was 

used to find the optimum number of neurons in the hidden layer, i.e., the mean square error (MSE) 

reached a minimum value. Seven and nine neurons were found to be optimum for the LDPE and HDPE 

hidden layer, respectively. Therefore, the optimum ANN configuration was 4-7-1 (4 neurons in the input 

layer, 7 in the hidden layer and 1 in the output layer) for LDPE and 4-9-1 (4 neurons in the input layer, 

9 in the hidden layer and 1 in the output layer) for HDPE, respectively. To reach the prediction accuracy 

- the maximum error was set to 10 %, the number of training cycles was set to 18,000 for HDPE and 

40,000 for LDPE. 

Generally, the quality of the ANN model depends on the quality of the training datasets [5, 20, 22, 

24]. In this study, two different scenarios, aimed at testing the capabilities of the artificial neural network 

to predict the flow length, were developed. The first scenario made use of experimentally measured flow 

lengths, while in the second scenario the flow lengths simulated by Moldex3D and Moldflow were 

considered. Considering the aforementioned scenarios, three datasets were generated for modeling with 

neural network, namely: a dataset generated from injection molding experiments and two datasets 

generated from Moldflow and Moldex3D simulations, respectively. An accurate ANN model requires a 

very large dataset and additional validation data [5, 20, 22, 24]. However, in this study, the training 

dataset includes a small number of data in order to reduce the computing time. 

The datasets are 27 design points sampled by the Taguchi DOE technique, as shown in Table 5. The 

idea was to reduce the number of runs as much as possible in order to predict the flow length using the 

injection molding simulations or experiments. In this way, the network is trained over a wide range of 

values with a reduced number of data, but not over-trained. 

Each dataset collected either from simulations or injection molding experiments was divided into a 

training dataset – used to train the neural network and adjust the weights of all connecting nodes until 

the desired error is reached, and a testing dataset – used to test the network performance. Out of the total 

of 27 data, 21 were considered for training and only 6 for testing the ANN model. Data were randomly 

selected from Table 5 (DOE 3, 8, 12, 17, 21 and 25, respectively). 
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The training process was conducted in two scenarios. In the first scenario, the ANN model was 

trained with experimental data and the ANN predictions were compared with the experimental testing 

dataset. In the second scenario, the ANN model was trained with simulation data and the predicted values 

were compared with both experimental and simulation datasets. 

For the discussion on the ANN models, the following abbreviations will be used throughout the 

paper: ANN-Moldex3D for the neural network trained with Moldex3D dataset, ANN-Moldflow for the 

neural network trained with Moldflow dataset, and ANN-Experiment for the neural network trained with 

experimental data. The quality of the ANN prediction (the agreement between the training and the 

prediction datasets) was assessed based on the correlation coefficient (R), the mean relative error and 

the root mean square error defined by [5, 22, 41]: 
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where simexp/,il  is the measured/simulation value, pred,

~
il  is the ANN predicted value of ith point, and N is 

the number of test data. 

The network showing the lowest MRE and RMSE, and the correlation coefficient closest to one was 

selected as the best-trained network. 

For evaluating the training performance of the ANN models, a MRE of 5% was taken as a limit for 

the model performance, while, for the testing performance of the ANN models, a MRE of 10 % was 

considered. 

The one-way analysis of variance (ANOVA) and the t-test were used for testing the significance of 

differences at a 0.05 level of significance (p<0.05 indicates statistically significant differences) [41]. 

The network performance for the ANN-Experiment, ANN-Moldflow and ANN-Moldex3D is 

illustrated in Table 7 and Table 8, for HDPE and LDPE, respectively, for both training and testing 

datasets. 

 

Table 7. Comparison of ANN models performances for HDPE 
Parameters Parameters ANN-Experiment ANN-Moldex3D ANN-Moldflow 

Training 

MRE 0.011 0.011 0.018 

R 1.000 1.000 0.999 

RMSE 1.95 2.11 6.090 

Testing 

MRE 0.047 0.017 0.055 

R 0.991 1.000 0.990 

RMSE 8.97 2.71 19.46 

 

Table 8. Comparison of ANN models performances for LDPE 
Parameters Parameters ANN-Experiment ANN-Moldex3D ANN-Moldflow 

Training 

MRE 0.016 0.008 0.008 

R 0.999 1.000 1.000 

RMSE 2.68 1.49 2.53 

Testing 

MRE 0.080 0.056 0.062 

R 0.945 0.996 0.946 

RMSE 15.67 8.81 38.69 

 

The ANN trained with Moldex3D data is the best-trained network, followed by the ANN trained 

with experimental data and the one trained with Moldflow data, as shown in Table 7 and Table 8. Based 

on the t-test, we have found that there is no statistically significant difference between the training data 

obtained by either simulation or experiment and the corresponding values predicted by the ANN model. 
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Based on the above analysis, it was concluded that the ANN models are adequate to predict the flow 

length for both polymers despite the small number of the data used in the training process (for example, 

only 21 experiments), if the input data are statistically significant. 

 

3.2. ANN flow length predictions 

Figure 12 shows the comparison between experimental data and the values predicted by ANN-

Experiment model for the testing dataset, i.e., DOE 3, 8, 12, 17, 21 and 25, respectively. The relative 

errors between the two approaches, calculated according to Eq. (1), are also depicted in this figure.  

       
 

As shown in Figure 12, the ANN-Experiment model generated very good predictions with only few 

over or under fitted results. The MRE testing values obtained from the ANN- Experiment for HDPE and 

LDPE were 4.7% and 8%, respectively. The values of R for HDPE and LDPE were found to be 0.991 

and 0.945, respectively, indicating that the ANN-Experiment model has efficiently approximated the 

experimental values. It was also found that there is no statistically significant difference (p-value is 0.45 

for HDPE and 0.47 for LDPE) between the flow length values predicted by the ANN- Experiment and 

the testing experimentally measured dataset. 

Figure 13 shows the comparison between the Moldex3D simulation and the ANN-Moldex3D 

prediction for the testing dataset, i.e., DOE 3, 8, 12, 17, 21 and 25, respectively. As it is shown in Figure 

13, the ANN model trained with Moldex3D simulation data is every good in predicting the behavior of 

the polymer flow length, except for DOE 25 (LDPE, 1 mm thickness). In this particular case, the relative 

error between the predicted and the simulation flow lengths was about 20%. 

 

Figure 12. Comparison 

of flow length between 

experimental data and 

ANN-Experiment 

prediction 
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Figure 13. Comparisons of flow length between Moldex3D 

simulation and ANN-Moldex3D prediction 

 

However, there are no statistically significant differences in flow length between the testing and the 

ANN-Moldex3D predicted flow lengths (p-value greater than 0.05 for both polymers). Moreover, as 

shown in Table 7 and Table 8, both the training and the testing MREs were bellow or equal to 5% 

indicating that the ANN-Moldex3D model was well trained and fully generalized. 

 
Figure 14. Comparison of flow length between Moldflow 

simulation and ANN-Moldflow prediction 
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Figure 14 shows the comparison between the Moldflow simulation and the ANN-Moldflow 

prediction for the testing dataset, i.e., DOE 3, 8, 12, 17, 21 and 25, respectively, not used in the training 

process. As shown in Table 7 and Table 8, the testing MREs are within acceptable limits, i.e., bellow 

10% and therefore the model offers good accurate results. Furthermore, based on the t-test, it was found 

that there are no significant differences between the testing and the predicted flow lengths (p-value=0.47 

and 0.43 for HDPE and LDPE, respectively, greater that 0.05). These results suggest that the ANN-

Moldflow model was well trained for predicting flow length based on the simulation with Moldflow 

despite the small number of data. The increase in MRE of ANN-Moldflow as compared with that of 

ANN-Modex3D is attributed to the fact that the Moldflow simulation gave greater flow length especially 

for cavities with higher thickness, i.e., 2 mm. 

Linear regression analysis was carried out between the flow length predicted by ANNs and their 

corresponding experimental values for all 27 data in Table 5. As shown in Figure 15, the ANN-

Moldex3D model shows a significant higher generalization capacity (R2 = 0.991 for HDPE and 0.928 

for LDPE) than the ANN-Moldflow model (R2 = 0.859 for HDPE and 0.815 for LDPE). 

 

 
Figure 15. Experimental data versus ANN predictions 

for flow length 

 

 

The predicted flow length based on ANN-Moldex3D is very close to the experimental observation, 

with a reasonable MRE of 10% for HDPE and 20% for LDPE. On the other hand, the MRE between the 

experimental data and ANN-Modflow values is equal to 30% for HDPE and 35% for LDPE. These high 

values for the MRE are caused by the fact that Moldflow overestimates (or underestimates) the flow 

length as compared with the experimental data, and not because the ANN model is not well trained. 
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4. Conclusions 
This paper discussed the application of CAE technology, such as Moldflow and Moldex3D, and the 

artificial neural network (ANN) method, for predicting the polymer flow length through a spiral part. A 

4-factor 3-level Taguchi (L27) orthogonal array was considered for the design of both numerical and 

injection molding experiments and for the generation of both the training and the testing datasets for the 

ANN modeling. The processing parameters selected for the injection molding process were melt 

temperature, mold temperature, injection pressure, and cavity thickness. The optimum ANN architecture 

was identified based on the trial and error method, and the predictive capabilities of the ANN models 

were compared based on root mean square error (RMSE), mean relative error (MRE) and correlation 

coefficient (R). 

The key conclusions of this research are: 

(1) The best modeling of experimental flow length, from both qualitative and quantitative 

viewpoints, was obtained with Moldex3D, with an MRE of 5 %. The gap between simulation and 

physical experiments is due to the simplification and approximation assumptions, especially in the case 

of the Moldflow software, which over-predicts the flow length, as compared with both Moldex3D and 

experimental results, especially for higher cavity thickness (greater than 1.0 mm). 

(2) Based on the experimental and simulation results, it was found that the cavity thickness is the 

most significant factor affecting the polymer flow length. The melt flow length decreases with the 

reduction of part thickness. Melt temperature is the secondary factor, higher melt temperature being also 

necessary in the molding process of thin wall plastic parts. 

(3) The ANN was applied to predict the LDPE and HDPE flow lengths based on both simulation and 

experimental data. The ANN models were tested on independent datasets originating from two simulated 

datasets and one experimental dataset. The ANN models were able to accurately predict the flow length 

with the MRE of the testing data less than 10%. The ANN-Moldex3D model was found to be more 

accurate in prediction as compared with the ANN-Moldflow model or the ANN-Experiment model. 

(4) The flow length predicted by the ANN model using Moldex3D and Moldflow data were 

statistically significant, indicating that the combination of ANN and Taguchi design of experiment 

method leads to a well-trained ANN model without performing many, expensive experiments. However, 

it can be argued that the use of CAE technologies to generate training data for the ANN model gives 

good results for the prediction of the flow length, if the CAE effectively simulates the injection molding 

process. Thus, the predictive ability of the ANN model trained with simulation data must be verified 

against experimental data. 
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